

3rd CNE International Cystinosis Conference

How to improve muscle function in cystinosis: IMPACT study

Christian Koeppl Physiotherapist B.A. Interdisciplinary Cystinosis Clinic RoMed Kliniken Rosenheim

Galileo training

Side alternating vibration

Whole-Body Vibration (WBV) is an effective and safe application

- Strengthening the muscles in a short training time
- Exercises can be done at home
- Hoyer-Kuhn H et al. A specialized rehabilitation approach improves mobility in children with osteogenesis imperfecta. J Musculoskelet Neuronal Interact. 2014;14(4):445-453.
 - Matute-Llorente A.Effect of whole-body vibration therapy on health-related physical fitness in children and adolescents with disabilities: a systematic review. J Adolesc Health. 2014;54(4):385-396.

Primary objectives

Does regular home practice, using Galileo vibration training platforms or vibrating dumbbells

- positively impacts muscle strength
- and increases cardiorespiratory performance in cystinosis patients.

Secondary objectives

Does the training

- result in a general increase in everyday activity
- and improvement in the quality of life.
- Is it possible to integrate the training into the day-to-day life of chronically ill patients.

IMPACT

Study group	Inclusion criteria	confirmed diagnosis of cystinosis children, prepubertal 5-13 years and adults > 18 years informed consent	
	Exclusion criteria	likelihood of serious intervention (e.g., transplantation, orthopedic intervention) contraindication according to the Galileo manual	
Study design	Randomized controlled Matched-pair design	study (age, sex, weight, length, renal function, dialysis, previous surgery)	
	Intervention Group Control group	n= 20 (Galileo Plate) n= 20 (Galileo dumbbells)	

Data basis Accelerometric data (Pedometer – 7 days) (before M1, M2, M3, M4)

M1Baseline measurementInterdisciplinary cystinosis clinic (Rosenheim)(including laboratory data, pQCT measurement)

M_{1,2,3,4} Jumping power : Leonardo Mechanograph®, single two- legged jump (3x) multiple one leg hopping (3x), Heel rise test (3x)
Grip strength and Finger strength: Keygrip, Two-point-grip (right and left (3x))
6-minute walking test (2x)
Balance tests (Romberg, Semi tandem, Tandem and one leg stand)
Surveys: Lifestyle (structed questionnaires)
Quality of life questionnaires (SF-36 or KINDL-R)
Patient training diaries

- M₂ after 14 weeks training (Mainz and Milan)
- M₃ after 28 weeks (Mainz and Milan)
- M₄ after 12 months (= M₁) (Rosenheim)

Randomization

training platform/dumbbells LMU Munich

of the training tools to the patients' homes

Initial training course Delivery

f training 10 short training sessions/week

14 weeks of training

Exercises

training platform (n= 4) dumbbells (n= 3) each exercise 30 sec. - 2 min.

Rosenheim

Training session

5 -10 minutes max. 2 training session/day

Training Frequency20 Hz up to 28 Hz

Regular supervision

Physiotherapist or sports student

Due to COVID

the study group was separated into two groups

-	adults	start 09/2020 - last visit 09/2021
-	children	start 09/2021- last visit 09/2022

and patients had less overall daily activity.

Parameter	Number of patients	male	female		
Number of patients	23 (100 %)	14 (60.87 %)	9 (39.13 %)***		
Age at last visit	28.09	29.15	26.79		
Age at diagnosis (month)*	17 [6 - 39]	18 [8 - 39]	15 [6 - 27]		
ESRD:	14 (60.87 %)	8 (57.14 %)	6 (66.67 %)		
ESRD: age**	12.75 [7.14 - 24.81]	13.52 [7.14 - 24.81]	11.87 [9.06 - 23.23]		
No cysteamine therapy	5				
5-10		1	3		
> 15 years			1		
* Median [Minimum - Maximum] ** Mittelwert [Minimum - Maximum]					

*** drop out n=1

Training diaries

The participants noted their completed training sessions with comments in a diary

A large proportion of the participants stated that they had trained very thoroughly and regularly Training period: 14 weeks, 10 units/week

Adults:

more than 95% of the required training target: 10 / 23

more than 80% of the required training target: 20 / 23

All participants reported no serious side effects or accidents during the training or serious discomfort caused by the training.

Integration into every day life

Summary

Regular training could be integrated well into the daily life of the participants.

The number of training sessions per week was too much and should be reduced.

Improvements in muscle strength and balance could be achieved through the training.

Christian Koeppl Anne-Laure Boulesteix, Tim Landfarth Susanne Bechtold-dalla Pozza Inga Jarosch Harald Schubert Johannes Willenecker Nadine Herzig Katharina Hohenfellner

Tessa Schneeberger Daniela Leitl Jessica Wendel Andreas Zech Moritz Berghaus Pauline Käser

Heike Holla Sonja Froschauer Dep. of Physiotherapy, SPZ, Traunstein Department of Medical Informatics, Biometry and Epidemiology (IBE), Munich Dep. of Endocrinology, Dr. v. Haunersche Kinderklinik, Munich Schoen Clinic, Schoenau a.K. Novotec Medical GmbH Novotec Medical GmbH Dep.of Orthopedics Schoen Clinic Harlaching, Munich RoMed Kliniken, Pediatric Nephrology, Rosenheim

Schoen Clinic, Schoenau a.K. Schoen Clinic, Schoenau a.K. Schoen Clinic, Schoenau a.K. Schoen Clinic, Schoenau a.K. Student, University of Frankfurt Physiotherapist, Rosenheim

Study nurse, Cystinosis Foundation, Germany Cystinosis Foundation, Germany

