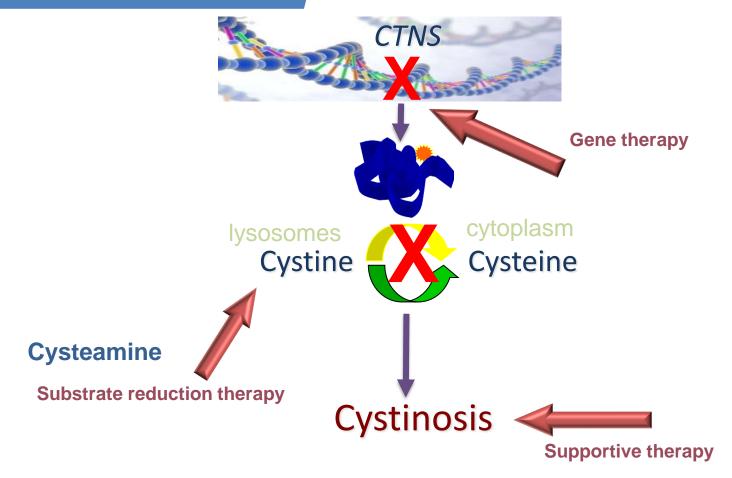
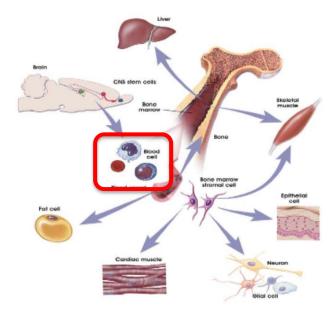

DISCLOSURE

• I am cofounder, shareholder and a member of both the scientific board and board of directors of Papillon Therapeutics Inc.


I am a Consultant for AVROBIO, Inc.

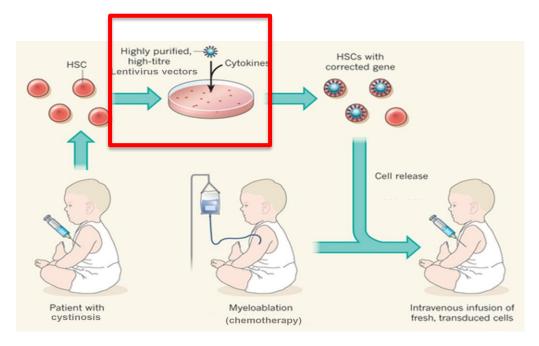
 I am a member of the Cystinosis Research Foundation Scientific Review Board and Board of Trustees


CYSTINOSIS, A LYSOSOMAL STORAGE DISORDER

CURRENT TREATMENT FOR CYSTINOSIS

Adult bone marrow stem cells

> Adult bone marrow stem cells


- Pluripotent
- Safe
- Currently used in clinical applications

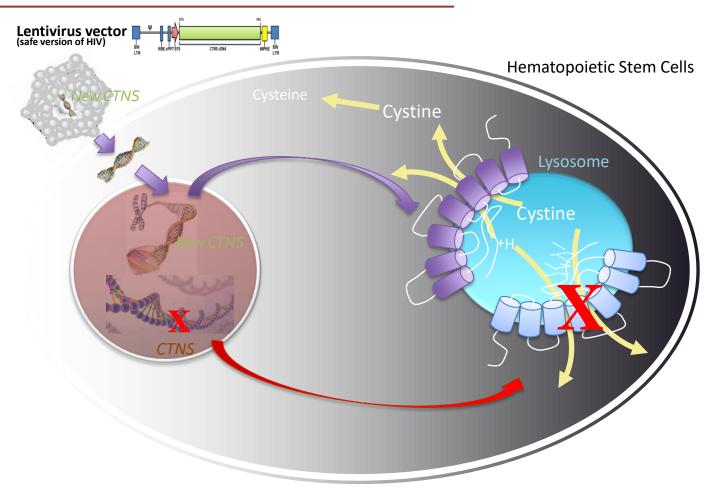
Three types of BMSC:

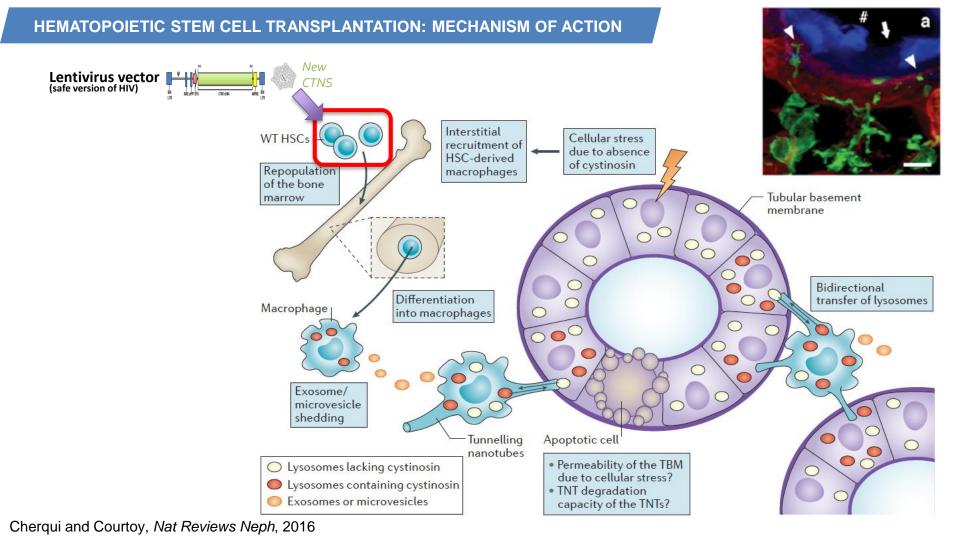
- Whole bone marrow cells (BMC)
- Hematopoietic stem cells (HSC)
- Mesenchymal stem cells (MSC)

© 2001 Terese Winslow, Lydia Kithuk, Cettin Duckwell

CLINICAL TRANSLATION: AUTOLOGOUS GENE-MODIFIED HSC TRANSPLANTATION

CCL-EFS-CTNS-WPRE


Lentivirus vector (engineered version of HIV)


Provided by Dr. Donald Kohn (UCLA)

Adapted from Leboulch, Nature 2013

Drug Product: CD34+ HSCs from patients, ex vivo gene-corrected using pCCL-CTNS

Ex vivo gene modification of the autologous stem cells

PHASE 1/2 AUTOLOGOUS STEM CELL GENE THERAPY CLINICAL TRIAL FOR CYSTINOSIS

Trial started on July 8th, 2019 at UC San Diego Health Center ClinicalTrials.gov Identifier # NCT03897361

Study Design: One arm, open label, single treatment safety and efficacy study - 6 patients

- Primary Endpoints
 - To assess the clinical tolerability and safety of treatment with CTNS-RD-04;
- **Secondary Endpoints**; To evaluate the impact of treatment with CTNS-RD-04 on:
 - To assess the effect of treatment with CTNS-RD-04 on white blood cell cystine levels
 - Clinical outcomes (especially kidney, eye and endocrine function)
 - Cystine level in tissues (rectal and skin biopsies)
 - Cystine crystal density (skin and eye)

<u>Inclusion Criteria</u>: 6 patients (3 cohorts of 2 patients)

- Male or female subject is ≥ 18 years of age.
- Subject is diagnosed with infantile cystinosis.
- Subject is free of acute illness.
- Subject is at least one-year status post-kidney transplant.
- Subject has adequate organ function.
- Subject is willing and able to comply with the study restrictions and requirements.
- Subject is willing to provide written informed consent prior to participation in the study.

UC San Diego Health

THE CYSTINOSIS STEM CELL AND GENE THERAPY CONSORTIUM

Stephanie Cherqui, Ph.D - Hematopoietic Stem Cell Gene Therapy, UCSD – Principal Investigator

Bruce Barshop, M.D., Ph.D – Director of the UCSD Biochemical Genetics lab – Principal Investigator

Edward D. Ball, M.D – Director of Bone Marrow Transplantation at UCSD – Principal Investigator

Natalie Afshari, M.D – Ophthalmology, UCSD

Nadine Benador, M.D – Nephrology, UCSD

Anna DiNardo, M.D – Dermatology, UCSD

Magdalene Dohil, M.D – Dermatology, UCSD

Ranjan Dohil, M.D – Gastroenterology, UCSD

Robert Mak, M.D – Nephrology/Muscle, UCSD

Susan Phillips, M.D – Endocrinology, UCSD

Kathleen Rickert, M.D – Orthopedy, UCSD

Doris A. Trauner, M.D – Neurology, UCSD

Donald B. Kohn, M.D – Hematopoietic Stem Cell Gene Therapy, UCLA

Paul Grimm, M.D – Nephrology, Stanford

Nancy Stack – Director of the Cystinosis Research Foundation

1- Inform Consent and Screening (2 days)

2- Baseline evaluation (8-9 days)

Kidney function

Blood, 24h urine lohexol clearance

Dr. Nadine Benador, Dr. Robert Mak

Eye exam

Corneal confocal microscopy Angiography Electroretinogram Optical Coherence Tomography

Dr. Natalie Afshari
Dr. Eric Nudleman

Muscle function, bone density

Walk test
Grip strength
X-ray absorptiometry (DEXA)

Dr. Robert Mak Dr. Kathleen Rickert

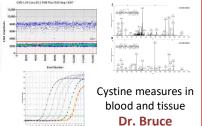
Neurological function Quality of Life Neurological exam

Neurological exan Questionnaires

Dr. Doris Trauner

Respiration capacity Spirometry

Endocrine function


Thyroid hormones
Fasting glucose
Reproductive
hormones

Histology to quantify cystine crystals

Rectal Biopsies

Dr. Ranjan Dohil

Barshop

Vector Copy Number CTNS expression

In vivo confocal microscopy Skin cystine crystal

Skin cystine crystal quantification

Dr. Magdalene Dohil

Patients stop oral cysteamine 2 weeks prior to drug product infusion and cysteamine eye drops 1-month post-infusion

PATIENTS' CELL MANUFACTURING AND TRANSPLANTATION

UC San Diego Health

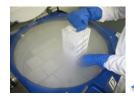
1- G-CSF/plerixaflor cell mobilization (4 days) and **Apheresis**

A back up apheresis product will be kept at UCSD

GMP Human Gene and Cell Therapy Dr. Donald Kohn

CCL-EFS-CTNS-WPRE lentiviral vector

2- CD34+ cell isolation and transduction (3 days)


Adult with cystinosis

6- Infusion

5- Busulfan conditioning (4 days) **Targeted Area Under the Curve** (AUC) - 90 mg x h/L

3- Cell characterization (UCSD/UCLA; 30-60 days)

4- Gene-modified stem cells shipped back to UCSD as a cryopreserved product

PATIENT BASELINE CHARACTERISTICS AND MANUFACTURING PRODUCTS

	PATIENT 1	PATIENT 2	PATIENT 3	PATIENT 4	PATIENT 5
Age of symptom onset/diagnosis	0 year / 8 months	0 year / 6 months	4 years	6 years	8 months
Age dosed with CTNS-RD-04	20 years Infused October 2019	46 years Infused June 2020	22 years Infused November 2020	33 years Infused November 2021	31 years Infused March 2022
Gender	Male	Male	Male	Male	Female
Mutation	 57-kb deletion c.696dupC, p.Val233Argfs*63 	 57-kb deletion c.473T>C, p.Leu158Pro 	 c.18_21del, p.Thr7Phefs*7 c.295_298del, p.Val99llefs*18 	57-kb deletionc.473T>C, p.Leu158Pro	 57-kb deletion c.414G>A, p.Trp138*
Kidney transplant status and cysteamine dosing prior to CTNS-RD-04 dosing	 No kidney transplant; stage 3 (moderate CKD) renal failure On oral Cysteamine On Cysteamine drops 	 2 renal transplants (1987 and 1999) On oral Cysteamine On Cysteamine drops 	1 renal transplant (2010)On oral CysteamineOn Cysteamine drops	 2 renal transplants (2008 and 2017) On oral Cysteamine Off Cysteamine drops 	 No renal transplant; stage 3 (moderate CKD) renal failure On oral Cysteamine On Cysteamine drops
Manufactured CTNS-RD-04 product and busulfan dose	 7.88 x 10e6 CD34+ cells/kg VCN: 2.07 94% viability AUC Bu: 81.8 mg.h/L 	 5.07 x 10e6 CD34+ cells/kg VCN: 1.27 91% viability AUC Bu: 86.7 mg.h/L 	 9.59 x 10e6 CD34+ cells/kg VCN: 1.59 95% viability AUC Bu: 90 mg.h/L 	 3.63 x 10e6 CD34+ cells/kg VCN: 0.59 90% viability AUC Bu: 88.5 mg.h/L 	 9.12 x 10e6 CD34+ cells/kg VCN: 2.5 95% viability AUC Bu: 88.2 mg.h/L

Phase 1/2 Cystinosis Trial (5 patients)

No unexpected safety events or trends ← related to CTNS-RD-04 identified

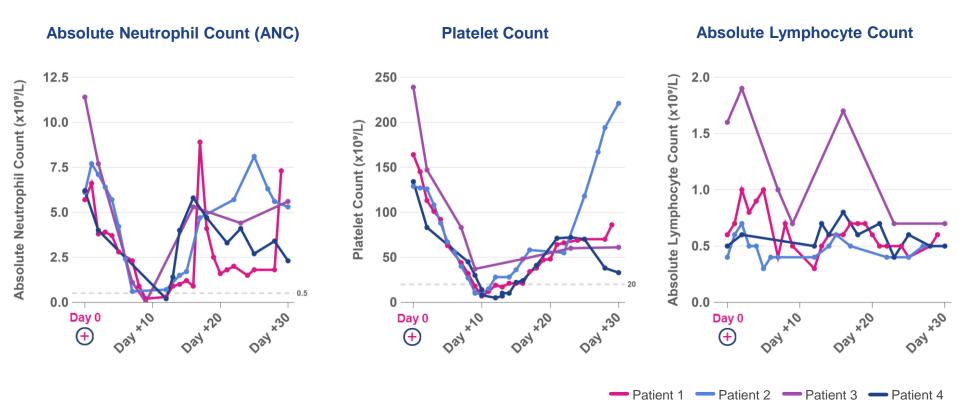
Preliminary Safety Results No SAEs or AEs related to CTNS-RD-04 drug product

No SAE reported

Preliminary AEs reported (as of May 6th, 2022)

- N=40 for subject 1; N=22 for subject 2; N=8 for subject 3; N=25 for subject 4; N=13 for subject 5
- · Majority of AEs are mild or moderate
- 1 severe AEs for subject 1
 - Appendicitis (resolved) unrelated to study treatment or procedures
- AEs are generally consistent with myeloablative conditioning or underlying disease:

Pre-gene therapy treatment and prior to conditioning (not all events listed)

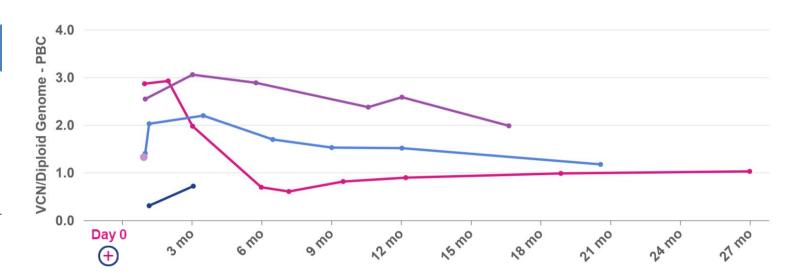

 Diarrhea, hypokalemia, hypomagnesemia, thrombocytopenia, dizziness, dehydration, vomiting, bone pain, and headache.

Post-treatment (not all events listed)

- Pancytopenia, deep vein thrombosis, Staphylococcus sepsis, Coronavirus infection, alopecia, rash, mucositis.
- Intermittent: diarrhea, vomiting, loss of appetite, epistaxis, blurry vision, febrile neutropenia, hypomagnesemia, and hypokalemia.

AE: Adverse Event; SAE: Serious Adverse Event

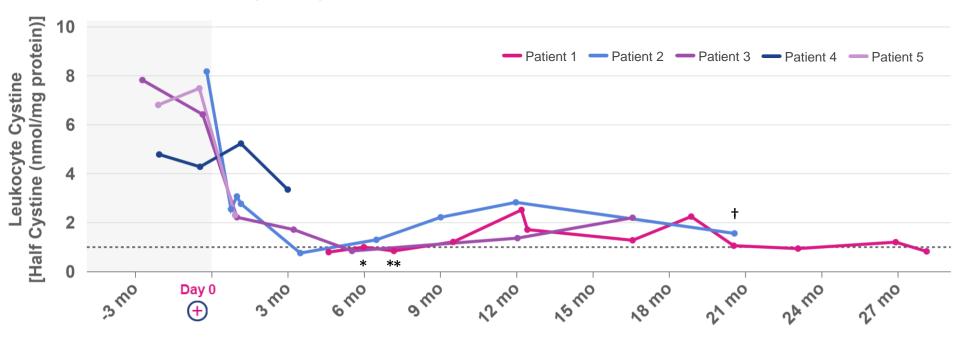
Busulfan is transiently myeloid depleting while sparing lymphocytes



VECTOR COPY NUMBER (VCN)

Measured in the peripheral blood of patients at different time points

Drug Product VCN/dg			
Patient 1	2.1		
Patient 2	1.3*		
Patient 3	1.6		
Patient 4	0.6		
Patient 5	2.5		


PRELIMINARY DATA

VCN: Vector Copy Number; PBCs: Peripheral Blood Cells; dg: Diploid Genome

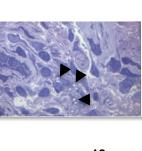
^{*} From second apheresis

LEUKOCYTE CYSTINE LEVELS

Leukocytes cystine levels decreased out to 28 months

PRELIMINARY DATA

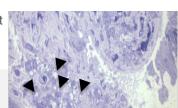
Note: Therapeutic range is <1.0 Half Cystine (nmol/mg protein). Measure of 1 is level of healthy heterozygote.


For Patient 1, Leukocyte Cystine Quantification was initiated at approximately week 20

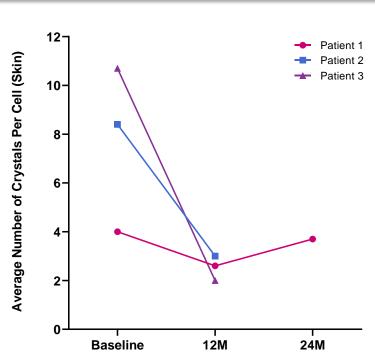
*Patient 1: Hemolyzed sample which may potentially lead to lower results

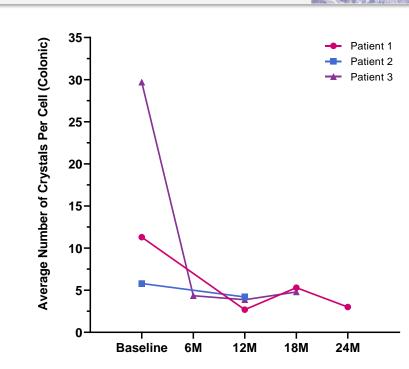
**Patient 1: Sample processed outside of the range of the stability

†Patient 2: Sample was not collected and shipped according to study protocol

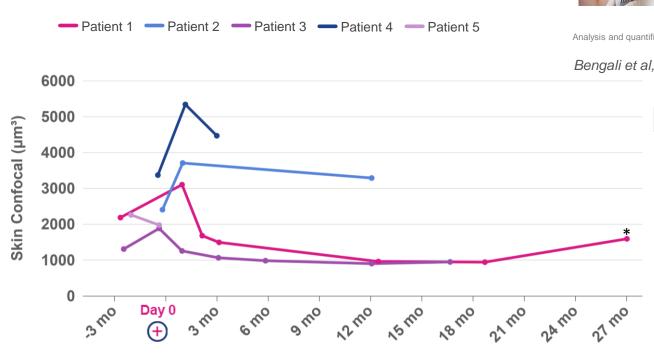

TISSUE CYSTINE CRYSTALS: BIOPSIES

Skin biopsy image at Baseline - Patient 1


Average intracytoplasmic crystals per cell


Rectal biopsy image at Baseline - Patient 1

Skin Biopsy


Rectal Biopsy

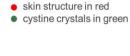
TISSUE CYSTINE CRYSTALS IN THE SKIN: CONFOCAL

Exploratory endpoint

PRELIMINARY DATA

*Patient 1: There are some concerns with the reliability of this data point as the analysis was done slightly different due to issue with software

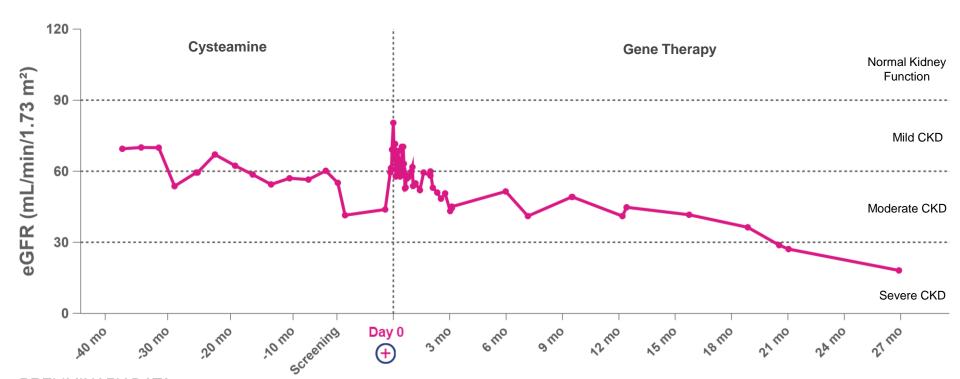
Caliber Vivascope® Skin Confocal microscope



Analysis and quantification (3D Image-Pro software)

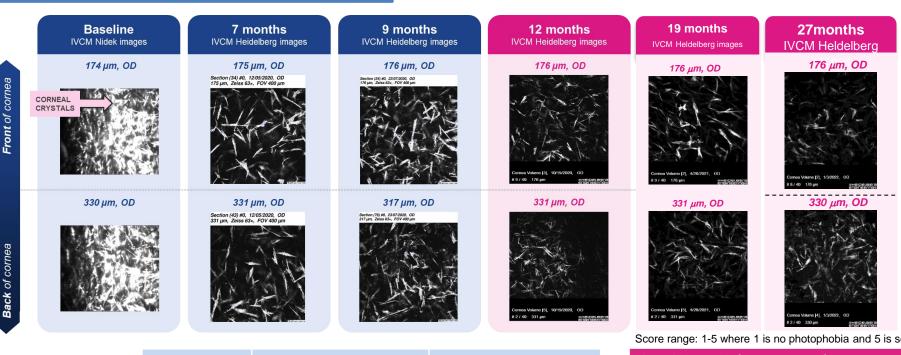
Bengali et al, PLOS ONE 2021

3D Crystal Reconstruction




PATIENT 1: KIDNEY FUNCTION

Entered trial with progressive kidney disease (eGFR of 48), decline accelerates in line with natural history



PRELIMINARY DATA eGFR: Estimated Glomerular Filtration Rate; eGFR calculated using CKD-EPI formula;

PATIENT 2 AND 3 – KIDNEY FUNCTION

PATIENT 1 - TISSUE CYSTINE CRYSTALS IN THE CORNEA

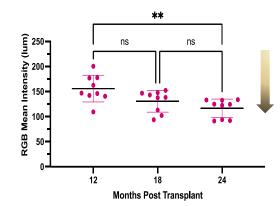
Preliminary scoring performed by Dr. Hong Liang, CNRS, Paris, France

Eve levere	OD		os	
Eye layers	Baseline	12 months	Baseline	12 months
Anterior Stroma	4	3	4	1.86
Middle Stroma	4	3	4	1.71
Posterior Stroma	4	2.13	4	2

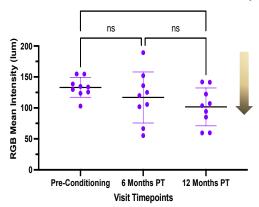
Score range: 1-5 where 1 is no photophobia and 5 is severe				
Photophobia Grade (Patient reported)				
Pre-Conditioning	3			
3 Months PT	Moderate			
12 Months PT	1			
18 Months PT	3			
24 Months PT	1			

NEUROCOGNITIVE ASSESSMENTS

Improvement in motor coordination and visual perception observed post-gene therapy

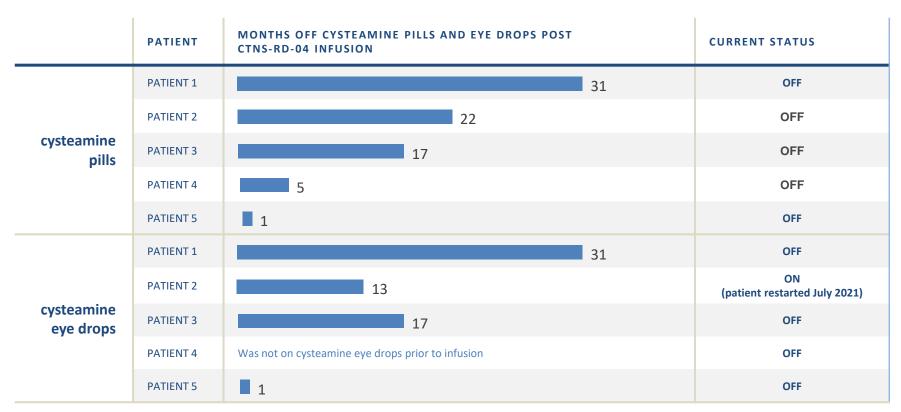

PRELIMINARY DATA

The Beery – Buktenica Developmental Test of Visual Motor Integration (Beery VMI) [6^{th} edition] is a standardized test evaluating the ability of the brain to interpret and translate visual information into an exact motor response


EXPLORATORY ENDPOINT: HAIR, SKIN AND EYE COLOR

18 Months PT 24 Months PT 12 Months PT Baseline **6 Months PT** 12 Months PT

CT.001 Hair color – RGB intensity



CT.005 Hair color – RGB intensity

PATIENTS 1-5

All patients continue to be oral cysteamine-independent **Patient #1 out 2+ years**

Note: All 5 patients remain off cysteamine pills. Patients 1 and 3 remain off cysteamine eye drops. Patient 2 elected to re-start cysteamine eyedrops; Patients 2, 3 and 5 stopped cysteamine eye drops 1-month post-transplant (per protocol); Patient 1 stopped cysteamine eye drops prior to baseline; Data as of May 6, 2022

ACKNOWLEDGEMENTS

Department of Pediatrics **Division of Genetics**

Jay Sharma Maulik Panchal Anne Sawyers Imama Ahmed Priyanka Mishra Rafael Badell Grau Veenita Khare Anusha Siyakumar Thi Le Alexander Silva

Former members

Celine Rocca Laura Hernandez Spencer Goodman Tatiana Lobry Marya Bengali Peter Hevezi, Ph.D Swati Naphade, PhD Carlos Castellanos **Betty Cabrera** Frank Harrison Joseph Rainaldi Athena Lau Peter Hevezi, Ph.D Brian A. Yeagy, PhD Robert Cano Joseph Haguang

The Cystinosis Stem Cell and Gene Therapy Consortium members

Bruce Barshop, MD – Theodore Ball, MD – Natalie Afshari, MD – Magdelene Dohil, MD – Ranjan Dohil – Nadine Benador, MD – Robert Mak, MD – Doris Trauner, MD

FUNDING

Diabetes and Digestive and Kidney Diseases

UC San Diego Health

CIRM Alpha Stem Cell Clinic

UC San Diego Health Sanford Stem Cell Clinical Center

UC San Diego Health

Medical Personnel **Patients**

Meisha Khan

Donald B. Kohn, MD

Julian Midgley, MD Alberta Children's Hospital